Mathematical modeling of vascular endothelial layer maintenance: the role of endothelial cell division, progenitor cell homing, and telomere shortening

Author:

Buijs Jorn Op den,Musters Mark,Verrips Theo,Post Jan Andries,Braam Branko,van Riel Natal

Abstract

Maintenance of the endothelial cell (EC) layer of the vessel wall is essential for proper functioning of the vessel and prevention of vascular disorders. Replacement of damaged ECs could occur through division of surrounding ECs. Furthermore, EC progenitor cells (EPCs), derived from the bone marrow and circulating in the bloodstream, can differentiate into ECs. Therefore, these cells might also play a role in maintenance of the endothelial layer in the vascular system. The proliferative potential of both cell types is limited by shortening of telomeric DNA. Accelerated telomere shortening might lead to senescent vascular wall cells and eventually to the inability of the endothelium to maintain a continuous monolayer. The aim of this study was to describe the dynamics of EC damage and repair and telomere shortening by a mathematical model. In the model, ECs were integrated in a two-dimensional structure resembling the endothelium in a large artery. Telomere shortening was described as a stochastic process with oxidative damage as the main cause of attrition. Simulating the model illustrated that increased cellular turnover or elevated levels of oxidative stress could lead to critical telomere shortening and senescence at an age of 65 yr. The model predicted that under those conditions the EC layer could display defects, which could initiate severe vascular wall damage in reality. Furthermore, simulations showed that 5% progenitor cell homing/yr can significantly delay the EC layer defects. This stresses the potential importance of EPC number and function to the maintenance of vascular wall integrity during the human life span.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference38 articles.

1. Age dependent aneuploidy and telomere length of the human vascular endothelium

2. Shear Stress-Dependent Expression of Apoptosis-Regulating Genes in Endothelial Cells

3. Telomere length and replicative aging in human vascular tissues.

4. Molecular and mechanical bases of focal lipid accumulation in arterial wall

5. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, and Stern DM.Endothelial cells in physiology and in the pathophysiology of vascular disorders.Blood91: 3527–3561, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3