Dissociation between metabolic and vascular insulin resistance in aging

Author:

Schulman Ivonne Hernandez,Zhou Ming-Sheng,Jaimes Edgar A.,Raij Leopoldo

Abstract

Physiological actions of insulin via activation of the phosphatidylinositol 3-kinase/Akt pathway in the endothelium serve to couple regulation of hemodynamic and metabolic homeostasis. Insulin resistance, endothelial dysfunction, and hypertension increase in prevalence with aging. We investigated the metabolic and endothelial actions of insulin in 24- vs. 3-mo Sprague-Dawley rats. With the use of the hyperinsulinemic euglycemic clamp, the rate of glucose infusion necessary to maintain equivalent plasma glucose (5.5 mmol/l) was similar in 24- vs. 3-mo rats, as was fasting glucose (5.2 ± 0.33 vs. 4.4 ± 0.37 mmol/l; mean ± SE) and insulin (0.862 ± 0.193 vs. 1.307 ± 0.230 mg/l). Systolic blood pressure was higher in 24-mo rats (133 ± 5 vs. 110 ± 4 mmHg; P = 0.005). Endothelial nitric oxide (NO)-dependent relaxation to insulin was impaired in aortas of 24- vs. 3-mo rats (maximal response 8.9 ± 4.3 vs. 34.9 ± 3.9%; P = 0.002); NG-nitro-l-arginine methyl ester abolished insulin-mediated relaxation in 3- but not 24-mo rats. Endothelium NO-dependent (acetylcholine) and -independent (sodium nitroprusside) relaxation, as well as NADPH oxidase activity, were similar in 3- and 24-mo rats. Insulin increased aortic serine phosphorylation of Akt in 3-mo rats by 120% over 24-mo rats ( P < 0.05) and serine phosphorylation of endothelial NO synthase (eNOS) in 3-mo rats by 380% over 24-mo rats ( P < 0.05). Aortic expression of phosphorylated c-Jun NH2-terminal kinase-1 and serine phosphorylated insulin receptor substrate-1, known mediators of metabolic insulin resistance, was similar in 3- and 24-mo rats. Expression of caveolin-1, a regulator of eNOS activity and insulin signaling, was 55% lower in 24- than 3-mo rats ( P = 0.002). In summary, impaired vasorelaxation to insulin in aging was independent of metabolic insulin sensitivity and associated with impaired insulin-mediated activation of the Akt/eNOS pathway, but intact activation of the acetylcholine-mediated Ca2+-calmodulin/eNOS pathway. Vascular insulin resistance in aging may add to the increased susceptibility of this population to vascular injury induced by traditional cardiovascular risk factors.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3