Aging-related increase in store-operated Ca2+ influx in human ventricular fibroblasts

Author:

Mohis Momin1,Edwards Stacie1,Ryan Sean1,Rizvi Farhan1ORCID,Tajik A. Jamil12,Jahangir Arshad12,Ross Gracious R.1

Affiliation:

1. Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Health Care, Milwaukee, Wisconsin

2. Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke’s Medical Centers, Milwaukee, Wisconsin

Abstract

Senescence-related fibrosis contributes to cardiac dysfunction. Profibrotic processes are Ca2+ dependent. The effect of aging on the Ca2+ mobilization processes of human ventricular fibroblasts (hVFs) is unclear. Therefore, we tested whether aging altered intracellular Ca2+ release and store-operated Ca2+ entry (SOCE). Disease-free hVFs from 2- to 63-yr-old trauma victims were assessed for cytosolic Ca2+ dynamics with fluo 3/confocal imaging. Angiotensin II or thapsigargin was used to release endoplasmic reticulum Ca2+ in Ca2+-free solution; CaCl2 (2 mM) was then added to assess SOCE, which was normalized to ionomycin-induced maximal Ca2+. The angiotensin II experiments were repeated after phosphoenolpyruvate pretreatment to determine the role of energy status. The expression of genes encoding SOCE-related ion channel subunits was assessed by quantitative PCR, and protein expression was assessed by immunoblot analysis. Age groups of <50 and ≥50 yr were compared using unpaired t-test or regression analysis. Ca2+ release by angiotensin II or thapsigargin was not different between the groups, but SOCE was significantly elevated in the ≥50-yr group. Regression analysis showed an age-dependent phosphoenolpyruvate-sensitive increase in SOCE of hVFs. Aging did not alter the mRNA expression of SOCE-related genes. The profibrotic phenotype of hVFs was evident by sprouty1 downregulation with age. Thus, an age-associated increase in angiotensin II- and thapsigargin-induced SOCE occurs in hVFs, independent of receptor mechanisms or alterations of mRNA expression level of SOCE-related ion channel subunits but related to the cellular bioenergetics status. Elucidation of mechanisms underlying enhanced hVF SOCE with aging may refine SOCE targets to limit aging-related progression of Ca2+-dependent cardiac fibrosis. NEW & NOTEWORTHY Human ventricular fibroblasts exhibit an age-related increase in store-operated Ca2+ influx induced by angiotensin II, an endogenous vasoactive hormone, or thapsigargin, an inhibitor of endoplasmic reticulum Ca2+-ATPase, independent of receptor mechanisms or genes encoding store-operated Ca2+ entry-related ion channel subunits. Selective inhibition of this augmented store-operated Ca2+ entry could therapeutically limit aging-related cardiac fibrosis.

Funder

Aurora Health Care Cardiovascular Surgical Research Award

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3