Attenuation of the unfolded protein response and endoplasmic reticulum stress after mechanical unloading in dilated cardiomyopathy

Author:

Castillero Estibaliz1,Akashi Hirokazu1,Pendrak Klara2,Yerebakan Halit1,Najjar Marc1,Wang Catherine1,Naka Yoshifumi1,Mancini Donna3,Sweeney H. Lee2,D′Armiento Jeanine4,Ali Ziad A.3,Schulze P. Christian3,George Isaac1

Affiliation:

1. Division of Cardiothoracic Surgery, New York Presbyterian Hospital - College of Physicians and Surgeons of Columbia University, New York, New York;

2. Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania;

3. Division of Cardiology, New York Presbyterian Hospital - College of Physicians and Surgeons of Columbia University, New York, New York; and

4. Department of Anesthesiology, Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, New York, New York

Abstract

Abnormal intracellular calcium (Ca2+) handling can trigger endoplasmic reticulum (ER) stress, leading to activation of the unfolded protein response (UPR) in an attempt to prevent cell death. Mechanical unloading with a left ventricular assist device (LVAD) relieves pressure-volume overload and promotes reverse remodeling of the failing myocardium. We hypothesized that mechanical unloading would alter the UPR in patients with advanced heart failure (HF). UPR was analyzed in paired myocardial tissue from 10 patients with dilated cardiomyopathy obtained during LVAD implantation and explantation. Samples from healthy hearts served as controls. Markers of UPR [binding immunoglobulin protein (BiP), phosphorylated (P-) eukaryotic initiation factor (eIF2α), and X-box binding protein (XBP1)] were significantly increased in HF, whereas LVAD support significantly decreased BiP, P-eIF2α, and XBP1s levels. Apoptosis as reflected by C/EBP homologous protein and DNA damage were also significantly reduced after LVAD support. Improvement in left ventricular dimensions positively correlated with P-eIF2α/eIF2α and apoptosis level recovery. Furthermore, significant dysregulation of calcium-handling proteins [P-ryanodine receptor, Ca2+ storing protein calsequestrin, Na+-Ca2+ exchanger, sarcoendoplasmic reticulum Ca2+-ATPase (SERCA2a), ER chaperone protein calreticulin] was normalized after LVAD support. Reduced ER Ca2+ content as a causative mechanism for UPR was confirmed using AC16 cells treated with a calcium ionophore (A23187) and SERCA2a inhibitor (thapsigargin). UPR activation and apoptosis are reduced after mechanical unloading, which may be mediated by the improvement of Ca2+ handling in patients with advanced HF. These changes may impact the potential for myocardial recovery.

Funder

HHS | NIH | National Center for Advancing Translational Sciences (NCATS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3