Secretoneurin facilitates endothelium-dependent relaxations in porcine coronary arteries

Author:

Chan Calvin KY1,Vanhoutte Paul M.12

Affiliation:

1. Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China; and

2. Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Korea

Abstract

Secretoneurin enhances the adhesion and transendothelial migration properties of monocytes and is a part of the peptide family encoded by the secretogranin II gene. The expression of the secretogranin II gene is upregulated in senescent endothelium. The present study was designed to examine the effects of secretoneurin on endothelium-dependent responsiveness. Isometric tension was measured in rings (with or without endothelium) of porcine coronary arteries. Secretoneurin did not induce contraction of quiescent or contracted rings. In preparations contracted by U-46619, relaxation was observed with high concentrations of the peptide. This relaxation was endothelium dependent and reduced by the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester (l-NAME). It was abolished when the preparations were incubated with l-NAME in combination with the cyclooxygenase inhibitor indomethacin. The relaxation was not affected by the combination of 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) and 6,12,19,20,25,26-hexahydro-5,27:13,18:21,24-trietheno-11,7-etheno-7H-dibenzo[b,m][1,5,12,16]tetraazacyclotricosine-5,13-diiumditrifluoroacetate hydrate (UCL 1684), which abrogates endothelium-dependent hyperpolarizations. These results indicate that secretoneurin acutely induces relaxation through the activation of endothelial nitric oxide synthase (eNOS) and cyclooxygenase, with nitric oxide playing the dominant role. Prolonged (24 h) incubation with physiological concentrations of secretoneurin enhanced the relaxations to bradykinin and to the calcium ionophore A-23187, but this difference was not observed in preparations incubated with l-NAME or the calmodulin antagonist calmidazolium. Under these conditions, the relaxation to sodium nitroprusside remained unchanged. Incubation with secretoneurin significantly augmented the expression of eNOS and calmodulin as well as the dimerization of eNOS in cultures of porcine coronary arterial endothelial cells. These observations suggest that secretoneurin not only acutely causes but also, upon prolonged exposure, enhances endothelium-dependent relaxations.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3