Author:
Mao Weike,Qin Fuzhong,Iwai Chikao,Vulapalli Raju,Keng Peter C.,Liang Chang-seng
Abstract
Cardiac norepinephrine (NE) uptake activity is reduced in congestive heart failure. Our studies in intact animals suggest that this effect on the cardiac sympathetic nerve endings is caused by oxidative stress and/or NE toxic metabolites derived from NE. In this study, we investigated the direct effects of NE on neuronal NE uptake activity and NE transporter (NET), using undifferentiated PC12 cells. Cells were incubated with NE (1–500 μM) either alone or in combination of Cu2+ sulfate (1 μM), which promotes free radical formation by Fenton reaction for 24 h. NE uptake activity was measured using [3H]NE. Cell viability was determined with the use of Trypan blue exclusion and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay, and cellular oxidative stress by dichlorodihydrofluorescein fluorescence and the GSH/GSSG ratio. Cell viability was reduced by NE >100 μM. At lower doses, NE produced oxidative stress and a dose-dependent reduction of NE uptake activity without affecting cell viability significantly. Cu2+, which has no direct effect on NE uptake activity, potentiated oxidative stress and reduction of NE uptake activity produced by NE. This decrease of NE uptake activity was associated with reductions of NE uptake binding sites and NET protein expression by using the radioligand assay and Western blot analysis, but no changes in NET gene expression. In addition, the free-radical scavenger mannitol, and antioxidant enzymes superoxide dismutase and catalase, reduced oxidative stress and attenuated the reductions of NE uptake activity and NET protein produced by NE/Cu. Thus our results support a functional role of oxidative stress in mediating the neuronal NE uptake reducing effect of NE and that this effect of NE on NET is a posttranscriptional event.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献