Interstitial volume modulates the conduction velocity-gap junction relationship

Author:

Veeraraghavan Rengasayee1,Salama Mohamed E.2,Poelzing Steven1

Affiliation:

1. Nora Eccles Harrison Cardiovascular Research and Training Institute,

2. Department of Pathology, University of Utah, Salt Lake City, Utah

Abstract

Cardiac conduction through gap junctions is an important determinant of arrhythmia susceptibility. Yet, the relationship between degrees of Gj uncoupling and conduction velocity (θ) remains controversial. Conflicting results in similar experiments are normally attributed to experimental differences. We hypothesized that interstitial volume modulates conduction velocity and its dependence on Gj. Interstitial volume (VIS) was quantified histologically from guinea pig right ventricle. Optical mapping was used to quantify conduction velocity and anisotropy (ARθ). Albumin (4 g/l) decreased histologically assessed VIS, increased transverse θ by 71 ± 10%, and lowered ARθ. Furthermore, albumin did not change isolated cell size. Conversely, mannitol increased VIS, decreased transverse θ by 24 ± 4%, and increased ARθ. Mannitol also decreased cell width by 12%. Furthermore, mannitol was associated with spontaneous ventricular tachycardias in three of eight animals relative to zero of 15 during control. The θ-Gj relationship was assessed using the Gj uncoupler carbenoxolone (CBX). Whereas 13 μM CBX did not significantly affect θ during control, it slowed transverse θ by 38 ± 9% during mannitol (edema). These data suggest changes in VIS modulate θ, ARθ, and the θ-Gj relationship and thereby alter arrhythmia susceptibility. Therefore, VIS may underlie arrhythmia susceptibility, particularly in diseases associated with gap junction remodeling.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3