Prediction of circulatory equilibrium in response to changes in stressed blood volume

Author:

Uemura Kazunori,Kawada Toru,Kamiya Atsunori,Aiba Takeshi,Hidaka Ichiro,Sunagawa Kenji,Sugimachi Masaru

Abstract

Accurate prediction of cardiac output (CO), left atrial pressure (PLA), and right atrial pressure (PRA) is a prerequisite for management of patients with compromised hemodynamics. In our previous study (Uemura et al. Am J Physiol Heart Circ Physiol 286: H2376–H2385, 2004), we demonstrated a circulatory equilibrium framework, which permits the prediction of CO, PLA, and PRA once the venous return surface and integrated CO curve are known. Inasmuch as we also showed that the surface can be estimated from single-point CO, PLA, and PRA measurements, we hypothesized that a similar single-point estimation of the CO curve would enable us to predict hemodynamics. In seven dogs, we measured the PLA-CO and PRA-CO relations and derived a standardized CO curve using the logarithmic function CO = SL[ln(PLA − 2.03) + 0.80] for the left heart and CO = SR[ln(PRA − 2.13) + 1.90] for the right heart, where SL and SR represent the preload sensitivity of CO, i.e., pumping ability, of the left and right heart, respectively. To estimate the integrated CO curve in each animal, we calculated SL and SR from single-point CO, PLA, and PRA measurements. Estimated and measured CO agreed reasonably well. In another eight dogs, we altered stressed blood volume (−8 to +8 ml/kg of reference volume) under normal and heart failure conditions and predicted the hemodynamics by intersecting the surface and the CO curve thus estimated. We could predict CO [ y = 0.93 x + 6.5, r 2 = 0.96, standard error of estimate (SEE) = 7.5 ml·min−1·kg−1], PLA ( y = 0.90 x + 0.5, r 2 = 0.93, SEE = 1.4 mmHg), and PRA ( y = 0.87 x + 0.4, r 2 = 0.91, SEE = 0.4 mmHg) reasonably well. In conclusion, single-point estimation of the integrated CO curve enables accurate prediction of hemodynamics in response to extensive changes in stressed blood volume.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3