Toluidine blue O and methylene blue as endothelial redox probes in the intact lung

Author:

Audi Said H.12,Olson Lars E.13,Bongard Robert D.3,Roerig David L.456,Schulte Marie L.3,Dawson Christopher A.12345

Affiliation:

1. Department of Biomedical Engineering, Marquette University, Milwaukee 53201-1881; Departments of

2. Pulmonary and Critical Care Medicine,

3. Physiology,

4. Anesthesiology, and

5. Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee 53226; and

6. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295

Abstract

There is increasing evidence that the redox activities of the pulmonary endothelial surface may have important implications for the function of both lungs and blood. Because of the inherent complexity of intact organs, it can be difficult to study these activities in situ. Given the availability of appropriate indicator probes, the multiple-indicator dilution (MID) method is one approach for dealing with some aspects of this complexity. Therefore, the objectives of the present study were to 1) evaluate the potential utility of two thiazine redox indicators, methylene blue (MB) and toluidine blue O (TBO), as MID electron acceptor probes for in situ pulmonary endothelium and 2) develop a mathematical model of the pulmonary disposition of these indicators as a tool for quantifying their reduction on passage through the lungs. Experiments were carried out using isolated rabbit lungs perfused with physiological salt solution with or without plasma albumin over a range of flow rates. A large fraction of the injected TBO disappeared from the perfusate on passage through the lungs. The reduction of its oxidized, strongly polar, relatively hydrophilic blue form to its colorless, highly lipophilic reduced form was revealed by the presence of the reduced form in the venous effluent when plasma albumin was included in the perfusate. MB was also lost from the perfusate, but the fraction was considerably smaller than for TBO. A distributed-in-space-and-time model was developed to estimate the reduction rate parameter, which was ∼29 and 1.0 ml/s for TBO and MB, respectively, and almost flow rate independent for both indicators. The results suggest the utility particularly of TBO as an electron acceptor probe for MID studies of in situ pulmonary endothelium and of the model for quantitative evaluation of the data.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3