Affiliation:
1. Departments of Anesthesia and
2. Cardiac Surgery, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
Abstract
In the heart, lipopolysaccharide (LPS) induces the production of proinflammatory cytokines that cause myocardial dysfunction; however, the signaling pathways involved in cardiomyocyte responses are poorly understood. We studied LPS-induced signaling by treating cardiomyocyte cultures with 0.01–10 μg/ml LPS for 0–24 h in the presence or absence of 2.5% serum. Cytosolic and nuclear proteins were analyzed for expression and activation of protein kinases. Members of the extracellular signal-regulated kinase (ERK) and signal transducer and activators of transcription (STAT) protein families were uniformly expressed and specifically phosphorylated in response to LPS. Activation was biphasic; peaking at 5–10 min and 24 h after treatment. Inhibitor experiments provided evidence that ERK proteins may regulate STAT activity. Serum did not augment endotoxin-induced phosphorylation. Although cardiomyocytes expressed low levels of CD14 and LPS-binding protein, specific enzymatic removal of glycosyl phosphatidylinositol-linked receptors or incubation with an anti-CD14 antibody had no effect on kinase activation. Treatment of cells with an excess of detoxified LPS attenuated endotoxin-induced signaling. In addition, endotoxin stimulated specific binding of nuclear factors to AP-1, nuclear factor-κB (NF-κB), STAT1 (SIE, sis-inducible element), and STAT3 consensus-binding sequences. Finally, inhibition of ERK phosphorylation reduced, and NF-κB nuclear translocation prevented, tumor necrosis factor-α production. Our results indicate that LPS-induced activation of signal transduction in cardiomyocytes occurs by a CD14-independent mechanism.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献