Enhanced gene expression of Na+/Ca2+exchanger attenuates ischemic and hypoxic contractile dysfunction

Author:

Hampton Thomas G.1,Wang Ju-Feng1,DeAngelis Joseph1,Amende Ivo1,Philipson Kenneth D.2,Morgan James P.1

Affiliation:

1. Charles A. Dana Research Institute and Harvard-Thorndike Laboratories, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215; and

2. Departments of Physiology and Medicine, University of California School of Medicine, University of California, Los Angeles, California 90095

Abstract

Enhanced gene expression of the Na+/Ca2+exchanger in failing hearts may be a compensatory mechanism to promote influx and efflux of Ca2+, despite impairment of the sarcoplasmic reticulum (SR). To explore this, we monitored intracellular calcium (Cai 2+) and cardiac function in mouse hearts engineered to overexpress the Na+/Ca2+ exchanger and subjected to ischemia and hypoxia, conditions known to impair SR Cai 2+transport and contractility. Although baseline Cai 2+and function were similar between transgenic and wild-type hearts, significant differences were observed during ischemia and hypoxia. During early ischemia, Cai 2+ was preserved in transgenic hearts but significantly altered in wild-type hearts. Transgenic hearts maintained 40% of pressure-generating capacity during early ischemia, whereas wild-type hearts maintained only 25% ( P < 0.01). During hypoxia, neither peak nor diastolic Cai 2+ decreased in transgenic hearts. In contrast, both peak and diastolic Cai 2+ decreased significantly in wild-type hearts. The decline of Cai 2+ was abbreviated in hypoxic transgenic hearts but prolonged in wild-type hearts. Peak systolic pressure decreased by nearly 10% in hypoxic transgenic hearts and >25% in wild-type hearts ( P < 0.001). These data demonstrate that enhanced gene expression of the Na+/Ca2+ exchanger preserves Cai 2+ homeostasis during ischemia and hypoxia, thereby preserving cardiac function in the acutely failing heart.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3