Systemic and renal hemodynamics after moderate hemodilution with HbOCs in anesthetized rabbits

Author:

Caron Alexis1,Menu Patrick1,Faivre-Fiorina Béatrice1,Labrude Pierre1,Alayash Abdu2,Vigneron Claude1

Affiliation:

1. Department of Hematology and Physiology, School of Pharmacy, University Henri Poincaré-Nancy 1, 54001 Nancy Cedex, France; and

2. Laboratory of Plasma Derivatives, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland 20892

Abstract

Hb-based O2-carrying solutions (HbOCs) have been developed as red blood cell substitutes for use in patients undergoing hemodilution. Variously modified Hb with diverse solution properties have been shown to produce variable hemodynamic responses. We examined, through pulsed-Doppler velocimetry, the systemic and renal hemodynamic effects of dextran-benzene-tetracarboxylate-conjugated (Hb-Dex-BTC), bis(3,5-dibromosalicyl)fumarate cross-linked (αα-Hb), and o-raffinose-polymerized ( o-raffinose-Hb) Hb perfused in rabbits after moderate hemodilution (30% hematocrit), and we compared the effects of these Hb solutions with the effects elicited by plasma volume expanders. In addition, vascular hindrance (resistance/blood viscosity at 128.5 s 1) was calculated to determine whether a moderate decrease in the viscosity of blood mixed with HbOCs may impair vasoconstriction as a result of autoregulation after infusion of cell-free Hb. No changes were observed in renal hemodynamics after hemodilution with reference or Hb solutions. Increase in blood pressure and vascular resistance was found with Hb-Dex-BTC and αα-Hb (for 180 min) and, to a lesser extent, with o-raffinose-Hb (for 120 min). Furthermore, Hb-Dex-BTC (high viscosity) and o-raffinose-Hb (medium viscosity) induced comparable increases in vascular hindrance (from 0.091 to 0.159 and from 0.092 to 0.162 cm 1, respectively) but far less than that produced by αα-Hb (low viscosity, from 0.092 to 0.200 cm 1). These results suggest that maintaining the viscosity of blood by infusing solutions with high viscosity makes it possible to limit vasoconstriction due to autoregulation mechanisms and mainly caused by hemodilution per se.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3