Affiliation:
1. School of Biomedical Sciences and
2. Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9NQ, United Kingdom; and
3. Lipides et Croissance Physiologique et Tumorale, Faculté de Médecine, Tonnellé, 7032 Tours, France
Abstract
The effects of short (1 min) and long (7–10 min) exposure to hyposmotic solution on excitation-contraction coupling in rat ventricular myocytes were studied. After short exposure, the action potential duration at 90% repolarization (APD90), the intracellular Ca2+concentration ([Ca2+]i) transient amplitude, and contraction increased, whereas the L-type Ca2+ current ( I Ca,L) amplitude decreased. Fractional sarcoplasmic reticulum (SR) Ca2+ release increased but SR Ca2+ load did not. After a long exposure, I Ca,L, APD90, [Ca2+]i transient amplitude, and contraction decreased. The abbreviation of APD90 was partially reversed by 50 μM DIDS, which is consistent with the participation of Cl− current activated by swelling. After 10-min exposure to hyposmotic solution in cells labeled with di-8-aminonaphthylethenylpyridinium, t-tubule patterning remained intact, suggesting the loss of de-t-tubulation was not responsible for the fall in I Ca,L. After long exposure, Ca2+ load of the SR was not increased, and swelling had no effect on the site-specific phosphorylation of phospholamban, but fractional SR Ca2+ release was depressed. The initial positive inotropic response to hyposmotic challenge may be accounted for by enhanced coupling between Ca2+ entry and release. The negative inotropic effect of prolonged exposure can be accounted for by shortening of the action potential duration and a fall in the I Ca,L amplitude.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献