Molecular dimensions of Hb-based O2 carriers determine constriction of resistance arteries and hypertension

Author:

Sakai Hiromi1,Hara Hiroyuki1,Yuasa Minako1,Tsai Amy G.2,Takeoka Shinji1,Tsuchida Eishun1,Intaglietta Marcos2

Affiliation:

1. Department of Polymer Chemistry, Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan; and

2. Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412

Abstract

The effect of molecular dimension of hemoglobin (Hb)-based O2carriers on the diameter of resistance arteries ( A 0, 158 ± 21 μm) and arterial blood pressure were studied in the conscious hamster dorsal skinfold model. Cross-linked Hb (XLHb), polyethylene glycol (PEG)-conjugated Hb, hydroxyethylstarch-conjugated XLHb, polymerized XLHb, and PEG-modified Hb vesicles (PEG-HbV) were synthesized. Their molecular diameters were 7, 22, 47, 68, and 224 nm, respectively. The bolus infusion of 7 ml/kg of XLHb (5 g/dl) caused an immediate hypertension (+34 ± 13 mmHg at 3 h) with a simultaneous decrease in A 0diameter (79 ± 8% of basal value) and a blood flow decrease throughout the microvascular network. The diameter of smaller arterioles did not change significantly. Infusion of larger O2 carriers resulted in lesser vasoconstriction and hypertension, with PEG-HbV showing the smallest changes. Constriction of resistance arteries was found to be correlated with the level of hypertension, and the responses were proportional to the molecular dimensions of the O2 carriers. The underlying mechanism is not evident from these experiments; however, it is likely that the effects are related to the diffusion properties of the different Hb molecules.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3