H2O2 mediates Ca2+- and MLC20phosphorylation-independent contraction in intact and permeabilized vascular muscle

Author:

Pelaez Nancy J.1,Braun Tracey R.1,Paul Richard J.2,Meiss Richard A.3,Packer C. Subah1

Affiliation:

1. Departments of Physiology and Biophysics and

2. Department of Molecular and Cell Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0576

3. Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5102; and

Abstract

One purpose of the current study was to establish whether vasoconstriction occurs in all vessel types in response to H2O2. Isometric force was measured in pulmonary venous and arterial rings, and isobaric contractions were measured in mesenteric arteries and veins in response to H2O2. A second purpose was to determine whether H2O2-induced contraction is calcium independent. The addition of H2O2 to calcium-depleted (using the Ca2+ ionophore ionomycin in zero calcium EGTA buffer) muscle caused contraction. Furthermore, permeabilized muscle contracted in response to H2O2 even in zero Ca2+. The final purpose was to determine whether the 20-kDa regulatory myosin light chain (MLC20) phosphorylation plays a role in H2O2-induced contraction. Pulmonary arterial strips were freeze-clamped at various time points during H2O2-induced contractions, and the relative amounts of phosphorylated MLC20 were measured. H2O2 caused dose-dependent contractions that were independent of MLC20 phosphorylation. ML-9, a myosin light chain kinase inhibitor, had no effect on the H2O2 contractile response. In conclusion, H2O2 induces Ca2+- and MLC20 phosphorylation-independent contraction in pulmonary and systemic arterial and venous smooth muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3