Affiliation:
1. Abteilung für Kardiologie und Pneumologie, Universität Göttingen, D-37075 Göttingen, Germany
Abstract
Catecholamines and elevated extracellular Ca2+concentration ([Ca2+]o) augment contractile force by increased Ca2+ influx and subsequent increased sarcoplasmic reticulum (SR) Ca2+ release. We tested the hypothesis that pyruvate potentiates Ca2+ release and inotropic response to isoproterenol and elevated [Ca2+]o, since this might be of potential importance in a clinical setting to circumvent deleterious effects on energy demand during application of catecholamines. Therefore, we investigated isometrically contracting myocardial preparations from rabbit hearts at 37°C, pH 7.4, and a stimulation frequency of 1 Hz. At a [Ca2+]o of 1.25 mM, pyruvate (10 mM) alone increased developed force (Fdev) from 1.89 ± 0.42 to 3.62 ± 0.62 (SE) mN/mm2 ( n = 8, P < 0.05) and isoproterenol (10−6 M) alone increased Fdev from 2.06 ± 0.55 to 25.11 ± 2.1 mN/mm2 ( P < 0.05), whereas the combination of isoproterenol and pyruvate increased Fdevoverproportionally from 1.89 ± 0.42 to 33.31 ± 3.18 mN/mm2 ( P < 0.05). In a separate series of experiments, we assessed SR Ca2+ content by means of rapid cooling contractures and observed that, despite no further increase in Fdev by increasing [Ca2+]o from 8 to 16 mM, 10 mM pyruvate could still increase Fdev from 26.4 ± 6.8 to 29.7 ± 7.1 mN/mm2( P < 0.05, n = 9) as well as the Ca2+ load of the SR. The results show that the positive inotropic effects of pyruvate potentiate the inotropic effects of isoproterenol or Ca2+, because in the presence of pyruvate, Ca2+ and isoproterenol induced larger increases in inotropy than can be calculated by mere addition of the individual effects.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献