Cerebral microvascular endothelial cell tube formation: role of astrocytic epoxyeicosatrienoic acid release

Author:

Munzenmaier Diane H.1,Harder David R.1

Affiliation:

1. Cardiovascular Research Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226

Abstract

Cerebral microvascular endothelial cells (CMVEC) form tubes when cocultured with astrocytes (AS). Therefore, it appears that AS may be important in mediating angiogenesis in the brain. We hypothesized that AS modulate CMVEC tube formation by releasing a soluble factor. Thymidine incorporation in cultured CMVEC increased 305% when incubated with 50% conditioned AS medium for 24 h [control: 52,755 ± 4,838 counts per minute (cpm) per well, conditioned 161,082 ± 12,099 cpm/well, n = 8]. Because our laboratory has previously shown that AS can produce epoxyeicosatrienoic acids (EETs), which are known mitogens, we investigated whether release of EETs by AS is responsible for tube formation in the CMVEC-AS coculture. AS were seeded on Lab-Tek slides, CMVEC were seeded on the AS the next day, and cultures were allowed to progress for another 5 days with and without cytochrome P-450 epoxygenase blockade by 17-octadecynoic acid (17-ODYA). Tube formation in cocultures receiving 17-ODYA was significantly inhibited compared with control (93.8%). These data suggest that tube formation requires the release of EETs by AS.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3