Affiliation:
1. Department of Electronics, Computer Science, and Systems, University of Bologna, I-40136 Bologna, Italy
Abstract
The role of the different mechanisms involved in the cardiovascular response to hypoxia [chemoreceptors, baroreceptors, lung stretch receptors, and central nervous system (CNS) hypoxic response] is analyzed in different physiological conditions by means of a mathematical model. The results reveal the following: 1) The model is able to reproduce the cardiovascular response to hypoxia very well between 100 and 28 mmHg Po 2. 2) Sensitivity analysis of the impact of each individual mechanism underlines the role of the baroreflex in avoiding excessive derangement of systemic arterial pressure and cardiac output during severe hypoxia and suggests the existence of significant redundancy among the other regulatory factors. 3) Simulation of chronic sinoaortic denervation (i.e., simultaneous exclusion of baroreceptors, chemoreceptors, and lung stretch receptors) shows that the CNS hypoxic response alone is able to maintain quite normal cardiovascular adjustments to hypoxia; however, suppression of the CNS hypoxic response, as might occur during anesthesia, led to a significant arterial hypotension. 4) Simulations of experiments with controlled ventilation show a significant decrease in heart rate that can only partly be ascribed to inactivation of lung stretch receptors. 5) Simulations performed by maintaining constant cardiac output suggest that during severe hypoxia the chemoreflex can produce a significant decrease in systemic blood volume. In all the previous cases, model predictions exhibit a satisfactory agreement with physiological data.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献