Somatostatin receptor subtype expression and function in human vascular tissue

Author:

Curtis Susan B.1,Hewitt Jeff2,Yakubovitz Svetlana3,Anzarut Alexander1,Hsiang York N.1,Buchan Alison M. J.3

Affiliation:

1. Departments of Surgery,

2. Biochemistry and Molecular Biology, and

3. Physiology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3

Abstract

In animal models the somatostatin analog angiopeptin inhibits intimal hyperplasia by acting primarily through somatostatin receptor 2 (SSTR-2). However, the results of clinical trials using angiopeptin have been disappointing. In this study we showed that human blood vessels express high levels of SSTR-1 with significantly lower levels of SSTR-2 and -4. Samples of normal veins and arteries, as well as atherosclerotic arteries, expressed predominantly SSTR-1. In addition, the levels of SSTR-1 varied between individuals, indicating that the vascular disease process may have affected SSTR gene expression. Immunocytochemical studies demonstrated that SSTR-1 was present in endothelial but not vascular smooth muscle cells. No evidence of SSTR-3 or -5 expression was detected in normal or diseased blood vessels. Two endothelial cell preparations, ECV304 and human umbilical vein endothelial cells, were investigated and shown to express only SSTR-1 and -4. Exposure of these cells to 10 nM somatostatin or 10 nM SSTR-1-specific agonist resulted in alterations to the actin cytoskeleton, as characterized by a loss of actin stress fibers coupled with an increase in lamellipodia formation at the plasma membrane. These results suggest that the lack of effectiveness of angiopeptin in humans may be due to the differential expression of SSTR-1 by human endothelial cells.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3