Dynamics of action potential head-tail interaction during reentry in cardiac tissue: ionic mechanisms

Author:

Hund Thomas J.1,Otani Niels F.1,Rudy Yoram123

Affiliation:

1. Cardiac Bioelectricity Research and Training Center, andDepartments of Biomedical Engineering,

2. Physiology and Biophysics, and

3. Medicine, Case Western Reserve University, Cleveland, Ohio 44106-7207

Abstract

In a sufficiently short reentry pathway, the excitation wave front (head) propagates into tissue that is partially refractory (tail) from the previous action potential (AP). We incorporate a detailed mathematical model of the ventricular myocyte into a one-dimensional closed pathway to investigate the effects of head-tail interaction and ion accumulation on the dynamics of reentry. The results were the following: 1) a high degree of head-tail interaction produces oscillations in several AP properties; 2) Ca2+-transient oscillations are in phase with AP duration oscillations and are often of greater magnitude; 3) as the wave front propagates around the pathway, AP properties undergo periodic spatial oscillations that produce complicated temporal oscillations at a single site; 4) depending on the degree of head-tail interaction, intracellular [Na+] accumulation during reentry either stabilizes or destabilizes reentry; and 5) elevated extracellular [K+] destabilizes reentry by prolonging the tail of postrepolarization refractoriness.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3