Altered frequency characteristic of central vasomotor control in SHR

Author:

Kuo Terry B. J.12,Yang Cheryl C. H.32

Affiliation:

1. Institute of Neuroscience and

2. Department of Neurology, Tzu Chi Buddhist General Hospital, Hualien 970, Taiwan, Republic of China

3. Department of Physiology, Tzu Chi College of Medicine and Humanities, Hualien 970; and

Abstract

Previous work from our laboratory has demonstrated that the very low-frequency (VLF: 0–0.25 Hz) and low-frequency (LF: 0.25–0.8 Hz) power of arterial pressure variability (APV) are related to vasomotor reactivity in response to control signals from the rostral ventrolateral medulla (RVLM) via the sympathetic system in the rat. The present study evaluated the differences in the dynamic property of central vasomotor control between spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Experiments were carried out in 10- to 12-wk-old rats that were anesthetized with continuous infusion of pentobarbital sodium, paralyzed with pancuronium, and maintained on mechanical ventilation. We found that SHR exhibited significantly higher arterial pressure (AP), heart rate (HR), and VLF, LF, and high-frequency (0.8–2.4 Hz) power of APV than WKY under resting state. Broad-band electrical stimulation of the RVLM elicited parallel APV in the VLF and LF ranges in both rat strains. The evoked APV and transfer magnitude of the APV to stimulus spike rate variability (RVLM-AP magnitude) were significantly higher in SHR, especially in the LF range. The response frequency of central vasomotor control, represented by the high-cut frequency of RVLM-AP magnitude, was also extended in SHR. The disparity in RVLM-AP transfer magnitude between SHR and WKY became virtually absent after combined α- and β-adrenoceptor blockade by phentolamine and propranolol. These results suggest that the dynamic control of RVLM on AP reactivity is enhanced in SHR, in which the adrenergic system may play a major role.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3