Red blood cell regulation of microvascular tone through adenosine triphosphate

Author:

Dietrich Hans H.1,Ellsworth Mary L.2,Sprague Randy S.3,Dacey Ralph G.1

Affiliation:

1. Department of Neurological Surgery, School of Medicine, Washington University, St. Louis 63110; and

2. Department of Pharmacological and Physiological Science and

3. Department of Medicine, School of Medicine, Saint Louis University, St. Louis, Missouri 63104

Abstract

The matching of blood flow with metabolic need requires a mechanism for sensing the needs of the tissue and communicating that need to the arterioles, the ultimate controllers of tissue perfusion. Despite significant strides in our understanding of blood flow regulation, the identity of the O2 sensor has remained elusive. Recently, the red blood cell, the Hb-containing O2carrier, has been implicated as a potential O2 sensor and contributor to this vascular control by virtue of its concomitant carriage of millimolar amounts of ATP, which it is able to release when exposed to a low-O2 environment. To evaluate this possibility, we exposed perfused cerebral arterioles to low extraluminal O2 in the absence and presence of red blood cells or 6% dextran and determined both vessel diameter and ATP in the vessel effluent. Only when the vessels were perfused with red blood cells did the vessels dilate in response to low extraluminal O2. In addition, this response was accompanied by a significant increase in vessel effluent ATP. These findings support the hypothesis that the red blood cell itself serves a role in determining O2 supply to tissue.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3