Resolution of smooth muscle and endothelial pathways for conduction along hamster cheek pouch arterioles

Author:

Bartlett Iain S.1,Segal Steven S.1

Affiliation:

1. The John B. Pierce Laboratory and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519

Abstract

In the cheek pouch of anesthetized male hamsters, microiontophoresis of Ach (endothelium-dependent vasodilator) or phenylephrine (PE; smooth muscle-specific vasoconstrictor) onto an arteriole (resting diameter, 30–40 μm) evokes vasodilation or vasoconstriction (amplitude, 15–25 μm), respectively, that conducts along the arteriolar wall. In previous studies of conduction, endothelial and smooth muscle layers of the arteriolar wall have remained intact. We tested whether selective damage to endothelium or to smooth muscle would disrupt the initiation and conduction of vasodilation or vasoconstriction. Luminal (endothelial) or abluminal (smooth muscle) light-dye damage was produced within an arteriolar segment centered 500 μm upstream from the distal site of stimulation; conducted responses (amplitude, 10–15 μm) were observed at a proximal site located 1,000 μm upstream. Endothelial damage abolished local responses to ACh in the central segment without affecting those to PE. Nevertheless, ACh delivered at the distal site evoked vasodilation that conducted through the central segment and appeared unhindered at the proximal site. Smooth muscle damage inhibited responses to PE in the central segment and abolished the conduction of vasoconstriction but did not affect conducted vasodilation. We suggest that for cheek pouch arterioles in vivo, vasoconstriction to PE is initiated and conducted within the smooth muscle layer alone. In contrast, once vasodilation to ACh is initiated via intact endothelial cells, the signal is conducted along smooth muscle as well as endothelial cell layers.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3