Myofilament lattice spacing as a function of sarcomere length in isolated rat myocardium

Author:

Irving Thomas C.1,Konhilas John2,Perry Darold1,Fischetti Robert1,de Tombe Pieter P.2

Affiliation:

1. Center for Synchrotron Radiation Research and Instrumentation and Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago 60616 and

2. Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60607-7171

Abstract

The Frank-Starling relationship of the heart has, as its molecular basis, an increase in the activation of myofibrils by calcium as the sarcomere length increases. It has been suggested that this phenomenon may be due to myofilaments moving closer together at longer lengths, thereby enhancing the probability of favorable acto-myosin interaction, resulting in increased calcium sensitivity. Accordingly, we have developed an apparatus so as to obtain accurate measurements of myocardial interfilament spacing (by synchrotron X-ray diffraction) as a function of sarcomere length (by video microscopy) over the working range of the heart, using skinned as well as intact rat trabeculas as model systems. In both these systems, lattice spacing decreased significantly as sarcomere length was increased. Furthermore, lattice spacing in the intact muscle was significantly smaller than that in the skinned muscle at all sarcomere lengths studied. These observations are consistent with the hypothesis that lattice spacing underlies length-dependent activation in the myocardium.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3