Affiliation:
1. Department of Anesthesia, University of Iowa College of Medicine, Iowa City, Iowa 52242
Abstract
We hypothesized that the response of cerebral blood flow (CBF) to changing viscosity would be dependent on “baseline” CBF, with a greater influence of viscosity during high-flow conditions. Plasma viscosity was adjusted to 1.0 or 3.0 cP in rats by exchange transfusion with red blood cells diluted in lactated Ringer solution or with dextran. Cortical CBF was measured by H2 clearance. Two groups of animals remained normoxic and normocarbic and served as controls. Other groups were made anemic, hypercapnic, or hypoxic to increase CBF. Under baseline conditions before intervention, CBF did not differ between groups and averaged 49.4 ± 10.2 ml · 100 g−1 · min−1 (±SD). In control animals, changing plasma viscosity to 1.0 or 3.0 cP resulted in CBF of 55.9 ± 8.6 and 42.5 ± 12.7 ml · 100 g−1 · min−1, respectively (not significant). During hemodilution, hypercapnia, and hypoxia with a plasma viscosity of 1.0 cP, CBF varied from 98 to 115 ml · 100 g−1 · min−1. When plasma viscosity was 3.0 cP during hemodilution, hypercapnia, and hypoxia, CBF ranged from 56 to 58 ml · 100 g−1 · min−1 and was significantly reduced in each case ( P < 0.05). These results support the hypothesis that viscosity has a greater role in regulation of CBF when CBF is increased. In addition, because CBF more closely followed changes in plasma viscosity (rather than whole blood viscosity), we believe that plasma viscosity may be the more important factor in controlling CBF.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献