Affiliation:
1. Division of Cardiology, Children's Memorial Hospital, Chicago, Illinois 60611.
Abstract
Heart rate (HR), stroke volume (SV), and aortic flow increase linearly between developmental stages 17 and 27, as the embryonic chick heart progresses from a bent tube to a rudimentary four-chambered structure and cardiac mass increases fourfold. We hypothesized that HR perturbation, expressed as percent of intrinsic HR (%HR), would have a developmentally dependent effect on flow and SV. HR was transiently perturbed to 40–250% of intrinsic rate with a 1-mm cooled or heated steel probe applied to the sinus venosus of 81 embryos. Aortic blood velocity, cross-sectional area, and HR were used to calculate flow and SV. At each stage, flow was maximal at intrinsic HR. The %HR vs. SV relationship was linear, inverse, and developmentally dependent. In spite of a tremendous change in ventricular shape, mass, and volume, HR control during development of the preinnervated heart maximizes blood flow to the developing embryo.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献