Rate-dependent functional properties of retrograde atrioventricular nodal conduction in experimental animals

Author:

O'Hara G.1,Gendreau R.1,Billette J.1,Amellal F.1,Nayebpour M.1,Talajic M.1,Nattel S.1

Affiliation:

1. Department of Medicine, Montreal Heart Institute, Canada.

Abstract

While rate-dependent atrioventricular (AV) nodal functional properties play a major role in determining antegrade AV nodal conduction, their existence and characteristics have not been assessed during retrograde AV nodal impulse propagation. Pacing protocols were used to study selectively AV nodal recovery, facilitation, and fatigue in 6 isolated, superfused rabbit AV nodal preparations and in 11 morphine-chloralose anesthetized dogs. All three properties were identifiable during retrograde AV nodal activation in rabbits. Retrograde recovery and fatigue were clearly demonstrated in dogs, but facilitation could not be evaluated because of echo beats during retrograde premature stimulation. Functional properties were qualitatively similar during retrograde and antegrade propagation; however, important quantitative differences were noted. The time constant for recovery from activation was significantly greater in the retrograde [rabbits, 69 +/- 8 (SE) ms; dogs, 93 +/- 11 ms] compared with the antegrade direction (rabbits, 50 +/- 5 ms; dogs, 58 +/- 4 ms; P < 0.05 vs. retrograde for each species). The magnitude of fatigue resulting from sustained increases in rate was also substantially greater in the retrograde direction in both rabbits (17 +/- 2 vs. 10 +/- 1 ms antegrade, P = 0.01) and dogs (20 +/- 4 vs. 6 +/- 1 ms antegrade, P < 0.01). Conduction time and refractory period were both greater in the retrograde compared with antegrade direction, and directional differences in conduction properties were magnified as activation rate increased.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3