Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries

Author:

Ku D. D.1,Zaleski J. K.1,Liu S.1,Brock T. A.1

Affiliation:

1. Department of Pharmacology, University of Alabama at Birmingham35294.

Abstract

Vascular endothelial growth factor (VEGF), also known as vascular permeability factor (VPF), has recently been shown to increase cytosolic free calcium in endothelial cells. In the present study, we investigated the coronary vascular effects of recombinant human and native guinea pig VEGF/VPF in isolated canine coronary arteries in the presence and absence of intimal endothelium, indomethacin, and NG-monomethyl-L-arginine, a competitive nitric oxide synthase inhibitor. Addition of recombinant VEGF/VPF (1-660 pM) in coronary arteries that had been previously contracted with prostaglandin F2 alpha induced a slow, dose-dependent relaxation, reaching a maximum of -59.1 +/- 6.7% (mean +/- SE, n = 19). Mechanical disruption of the intimal endothelium completely abolished the observed relaxation. No direct vascular effect of recombinant VEGF/VPF on the endothelium-disrupted coronary arteries was noted. Pretreatment of endothelium-intact coronary arteries with 5 microM of indomethacin did not alter the observed relaxation (-57.3 +/- 7.0%, n = 18), whereas pretreatment with either NG-monomethyl-L-arginine or 10 microM of genistein, a known inhibitor of tyrosine kinase, significantly inhibited the relaxation. Addition of native VEGF/VPF (1-100 pM) also induced an endothelium-dependent relaxation in the isolated coronary arteries. Heating of recombinant VEGF/VPF (70 degrees C, 25 min) or prior incubation with a specific antibody raised against a VEGF/VPF peptide completely abolished the relaxation. Finally, recombinant VEGF/VPF stimulated a slow rise in cytosolic free calcium in cultured human endothelial cells that was qualitatively similar to that of native VEGF/VPF.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3