Rapid stimulation of Ins (1,4,5)P3 production in rat aorta by NE: correlation with contractile state

Author:

Pijuan V.1,Sukholutskaya I.1,Kerrick W. G.1,Lam M.1,van Breemen C.1,Litosch I.1

Affiliation:

1. Department of Molecular and Cellular Pharmacology.

Abstract

Rapid stimulation of Ins(1,4,5)P3 production in rat aorta by NE: correlation with contractile state. Am. J. Physiol. 264 (Heart Circ. Physiol. 33): H126-H132, 1993.--The isomeric composition of inositol phosphates generated in response to norepinephrine (NE) stimulation and the relationship of inositol phosphate production to release of intracellular Ca2+ as measured by contraction were characterized in rat aorta prelabeled with [3H]inositol. NE stimulated a rapid and transient increase in labeled D-myo-inositol 1,4,5-trisphosphate [Ins-(1,4,5)P3] levels. A maximal increase in labeled Ins(1,4,5)P3 occurred within 15 s of stimulation followed by a decline to control levels at 5 min. D-Myo-inositol 1,3,4-trisphosphate [Ins-(1,3,4)P3] and D-myo-inositol 1-monophosphate [Ins(1)P] levels also increased rapidly in response to NE. In contrast to the transient production of Ins(1,4,5)P3, Ins(1,3,4)P3 and Ins(1)P production was maintained in the presence of NE. Half-maximal stimulation of Ins(1,4,5)P3 production and Ca2+ release occurred at 0.3 microM NE, and maximal effects were obtained with 10 microM NE. The concentration-response curve and time course for production of Ins(1,4,5)P3 correlated with the neurotransmitter-induced Ca2+ release from intracellular stores, indicating that the level of Ins(1,4,5)P3 regulated the Ca(2+)-release mechanism. In the continued presence of NE, the intracellular pools did not completely refill with Ca2+ despite the return of Ins-(1,4,5)P3 levels to basal at 5 min. These results demonstrate that NE stimulates a rapid increase in Ins(1,4,5)P3 that correlates with contraction in Ca(2+)-free buffer. The reuptake of Ca2+ into intracellular stores is regulated by a mechanism that may not involve Ins(1,4,5)P3.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3