pH dependence of kinetics and steady-state block of cardiac sodium channels by lidocaine

Author:

Wendt D. J.1,Starmer C. F.1,Grant A. O.1

Affiliation:

1. Department of Medicine, Duke University Medical Center, Durham, NorthCarolina 27706.

Abstract

The local anesthetic-class antiarrhythmic drugs produce greater depression of conduction in ischemic compared with normal myocardium. The basis for this relatively selective action is uncertain. A model of the pH-dependent interaction of tertiary amine drugs with the sodium channel suggests that the low pH occurring during ischemia slows drug dissociation from the channel by changing the drug's protonation. The importance of the proton exchange reaction and the effect of overall slowing of drug dissociation on steady-state sodium channel blockade is uncertain. We have measured whole cell sodium channel current in rabbit atrial myocytes during control and exposure to lidocaine while external pH was varied between 6.8 and 7.8 at membrane potentials of -140, -120, and -100 mV. Tonic blockade was little influenced by external pH. Decreasing the external pH from 7.8 to 6.8 slowed both the rate of development of phasic block and recovery from the block. Decreasing the membrane potential from -140 to -100 mV increased the degree of phasic block attained in the steady state. Block was further enhanced when low pH was combined with membrane depolarization. Experiments in which deuterium ions were substituted for protons suggest that the kinetics of proton exchange is not rate limiting in the dissociation of drugs from the sodium channel. We conclude that it is the combined effect of low pH and membrane depolarization that may be critical in the enhanced blocking action of local anesthetic-class drugs during ischemia.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3