Affiliation:
1. Department of Pharmacological and Physiological Science, St. Louis University Medical School, Missouri 63104.
Abstract
The relationship between age and central noradrenergic neuronal activity of the paraventricular hypothalamic nucleus (PVH) was examined in 7- to 10-, 12- to 14-, and 30- to 36-wk-old Sprague-Dawley (SD), Wistar-Kyoto (WKY), and spontaneously hypertensive rats (SHR). As an index of noradrenergic activity, endogenous norepinephrine (NE) overflow was assessed utilizing a miniaturized push-pull cannula assembly in unanesthetized freely moving rats. NE overlow under basal, 56 mM K+ stimulation, and in response to pressor/depressor drugs, were examined in all three strains at all ages. Significant increases in basal and K(+)-stimulated overflow of endogenous NE from the PVH were observed in all ages of SHR compared with normotensive controls with the greatest percent increase occurring during the development of hypertension in SHR. In addition, a reciprocal relationship exists with respect to blood pressure and overflow of NE from the PVH such that increases/decreases in blood pressure elicit decreases/increases in NE overflow in all strains at all ages examined. However, developing hypertensive SHR exhibited attenuated decreases in overflow of NE from the PVH compared with age-matched controls and established hypertensive SHR. These results suggest that noradrenergic pathways of the PVH contribute to the development and maintenance of arterial pressure hemostasis and that enhanced central noradrenergic neuronal activity is greatest during the development of hypertension in SHR.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献