Mechanical workload-myocardial water content relationship in isolated rat hearts

Author:

Schertel E. R.1,Daye R. M.1,McClure D. E.1,Lai T.1,Miyamoto M.1,Myerowitz P. D.1

Affiliation:

1. Department of Surgery, Ohio State University, Columbus 43210-1228, USA.

Abstract

We tested the hypothesis that the mechanical workload of the heart inversely determines the rate of myocardial edema formation in an isolated, perfused rat heart preparation. Heart rate (HR) was varied in three groups by pacing at 125 (HR125), 250 (HR250), or 350 beats/min (HR350). Left ventricular pressure (LVP) was varied in two additional groups by pacing at 250 beats/min and with the addition of either epinephrine (Epi) or propranolol (Pro) to the perfusate. In five otherwise identical groups, variation of coronary vascular resistance was minimized by adenosine. Myocardial water content (MWC) varied significantly and inversely with HR in the HR125, HR250, and HR350 groups. MWC of the HR250 group was significantly less than that of the Pro group but did not differ from the Epi group. However, when adenosine was used, MWC had significant inverse relationships with HR and LVP. We concluded that the mechanical workload of the heart inversely determines the rate and degree of myocardial edema formation in this isolated heart preparation, and both HR and LVP are determinants of this relationship.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3