Modulation of SERCA2 expression by thyroid hormone and norepinephrine in cardiocytes: role of contractility

Author:

Muller A.1,Zuidwijk M. J.1,Simonides W. S.1,van Hardeveld C.1

Affiliation:

1. Laboratory for Physiology, Institute for Cardiovascular Research,Vrije Universiteit, Amsterdam, The Netherlands.

Abstract

Decreased expression of the cardiac slow-twitch sarcoplasmic reticulum Ca2+-adenosinetriphosphatase (SERCA2), a major determinant of Ca2+ homeostasis, contributes to the abnormal intracellular Ca2+ handling in the failing heart. We investigated the contractility dependence of the effects of norepinephrine (NE) and thyroid hormone (T3) on SERCA2 expression in cultured neonatal heart cells under serum-free conditions. NE and T3 are associated with pathological and physiological forms of hypertrophy, respectively, whereas both hormones increase contractility. In contracting cultures, T3 increased SERCA2 protein and mRNA levels by 35 and 110%, respectively. The same stimulatory effects of T3 on SERCA2 expression were found in contraction-arrested cells. In contracting cultures, NE induced a decrease of SERCA2 protein and mRNA levels by 40 and 60%, respectively. In contrast, SERCA2 protein and mRNA levels were not decreased by NE in contraction-arrested cells, indicating that contractility is a prerequisite for the negative influence of NE on SERCA2 expression. Electrical stimulation at a fixed frequency in the presence and absence of NE demonstrated that the NE-induced increase in contraction frequency is unlikely to account for the decreased SERCA2 expression induced by NE. The results suggest that the effect of contractility on SERCA2 expression depends on the signal transduction pathways that are activated by NE and T3.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3