Affiliation:
1. The Copenhagen Muscle Research Center, Rigshospitalet, DK-2200 Copenhagen, Denmark
Abstract
We hypothesized that reducing arterial O2 content ([Formula: see text]) by lowering the hemoglobin concentration ([Hb]) would result in a higher blood flow, as observed with a low [Formula: see text], and maintenance of O2 delivery. Seven young healthy men were studied twice, at rest and during two-legged submaximal and peak dynamic knee extensor exercise in a control condition (mean control [Hb] 144 g/l) and after 1–1.5 liters of whole blood had been withdrawn and replaced with albumin {mean drop in [Hb] 29 g/l (range 19–38 g/l); low [Hb]}. Limb blood flow (LBF) was higher ( P < 0.01) with low [Hb] during submaximal exercise (i.e., at 30 W, LBF was 2.5 ± 0.1 and 3.0 ± 0.1 l/min for control [Hb] and low [Hb], respectively; P < 0.01), resulting in a maintained O2 delivery and O2 uptake for a given workload. However, at peak exercise, LBF was unaltered (6.5 ± 0.4 and 6.6 ± 0.6 l/min for control [Hb] and low [Hb], respectively), which resulted in an 18% reduction in O2 delivery ( P < 0.01). This occurred despite peak cardiac output in neither condition reaching >75% of maximal cardiac output (∼26 l/min). It is concluded that a low CaO2 induces an elevation in submaximal muscle blood flow and that O2 delivery to contracting muscles is tightly regulated.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献