Cell cycle effects of nitric oxide on vascular smooth muscle cells

Author:

Sarkar R.1,Gordon D.1,Stanley J. C.1,Webb R. C.1

Affiliation:

1. Department of Physiology, University of Michigan Medical Center, AnnArbor 48109, USA.

Abstract

We characterized the cell cycle block induced by nitric oxide (NO) on smooth muscle cells (SMC). We hypothesized that the inhibition of SMC proliferation by NO was due to a specific block in cell cycle progression. Treatment of cultured rat aortic SMC with the NO donors S-nitroso-N-acetylpenicillamine or S-nitrosoglutathione (0.1 mM for 48 h) resulted in a 50% decrease (P < 0.05) in the fraction of cells in the S and G2 + M phases and a corresponding increase in the G1 fraction, suggesting that NO inhibits entry into S phase, causing accumulation of cells in G1 phase. Application of both NO donors to cycling SMC resulted in a short-term, concentration-dependent (0.06-0.3 mM) inhibition of ongoing DNA synthesis as measured by radiothymidine incorporation, demonstrating that NO causes an S-phase arrest. The S-phase arrest by NO was not mimicked by exogenous guanosine 3',5'-cyclic monophosphate (cGMP, 10 mM) and was associated with, but not due to, a 20% inhibition of RNA synthesis. The S-phase block was completely reversed within 2 h of removal of the NO donors, similar to inhibition by the ribonucleotide reductase inhibitor hydroxyurea. Prolonged treatment of SMC with either NO donor (0.1 mM) did not synchronize cells at the G1-S boundary as expected after a prolonged S-phase arrest, but instead induced a quiescent G0-like state characterized by a 12- to 18-h lag before DNA synthesis returned to normal levels after NO removal. These findings demonstrate that NO inhibition of SMC proliferation is associated with two distinct and reversible cell cycle arrests, an immediate cGMP-independent S-phase block followed by a shift back in the cell cycle from the G1-S boundary to a quiescent G0-like state.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3