Arteriolar constriction in skeletal muscle during vascular stunning: role of mast cells

Author:

Keller M. W.1

Affiliation:

1. University of Colorado Health Sciences Center, Denver 80220, USA.

Abstract

Striated muscle becomes stunned during reperfusion after sublethal ischemia. Resistance vessel tone and reactivity are altered in stunned muscle tissues. The hypothesis that adenosine-regulated mast cell degranulation occurs during reperfusion and leads to constriction of resistance arterioles was tested. The hamster cremaster muscle was subjected to 1 h of ischemia followed by reperfusion. Resistance arterioles constricted during reperfusion (74% of maximal diameter at baseline vs. 42% of maximal diameter after 30 min of reperfusion; P < 0.01). Mast cells degranulated in reperfusion concomitant with arteriolar constriction. Stimulation of mast cell degranulation in control animals with compound 48/80 or cold superfusate (21 degrees C) caused vasoconstriction that mimicked that seen in reperfusion. The mast cell stabilizer cromolyn blocked degranulation and constriction. If mast cell granules were depleted by applying compound 48/80 before inducing ischemia, then arterioles failed to constrict during reperfusion. Adenosine A3-antagonist BW-A1433 abolished constriction. These findings suggest that arterioles constrict in reperfusion due to adenosine-regulated mast cell degranulation. Vasodilation in response to sodium nitroprusside and acetylcholine was normal in stunned, constricted arterioles. However, the dose-response curves to adenosine were shifted to the left in arterioles constricted by either stunning, compound 48/80, exposure to cold superfusate, or cromolyn compared with control vessels. Depletion of granular components via stunning, compound 48/80, cold superfusate, or inhibition of secretion with cromolyn results in unopposed A1- or A2-mediated vasodilation in response to adenosine, whereas the dilatory effects of adenosine are blunted by simultaneous release of vasoconstrictors from mast cells in control animals. In summary, it was found that mast cell degranulation occurs during reperfusion and leads to constriction of resistance arterioles and altered vascular reactivity to adenosine. Adenosine is released in ischemia and stimulates mast cell degranulation via the A3 receptor located on mast cells during reperfusion.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3