Negative chronotropic and inotropic effects of endothelin isopeptides in mammalian cardiac muscle

Author:

Zhu Y.1,Yang H. T.1,Endoh M.1

Affiliation:

1. Department of Pharmacology, Yamagata University School of Medicine, Japan.

Abstract

In isolated rabbit right atria, endothelin (ET) isopeptides ET-1 and ET-3 elicited a concentration-dependent negative chronotropic effect (NCE) in the presence of isoproterenol (Iso): ET-1 was approximately 10 times more potent than ET-3. The NCE of ET-1 was abolished by the ETA- and ETB-receptor antagonist TAK-044 (1 microM) or the ETA-receptor antagonist BQ-123 (10 microM), but it was not affected by the ETB-receptor antagonist RES-701-1 or BQ-788. ET-1 decreased the adenosine 3',5'-cyclic monophosphate (cAMP) level in the presence of Iso in rabbit atria. Pretreatment with pertussis toxin (PTX) markedly attenuated the NCE of ET-1 and abolished the decrease in the cAMP level induced by ET-1. In isolated dog ventricular trabeculae, ET-1 elicited a pronounced negative inotropic effect (NIE), whereas ET-3 induced a small but significant positive inotropic effect in the presence of Iso. The NIE was abolished by the ETA-receptor antagonist BQ-123 (1 microM) and partially attenuated by the ETB-receptor antagonist RES-701-1. The positive inotropic effect of ET-3 was abolished by RES-701-1. Although pretreatment with PTX markedly attenuated the NIE of ET-1, cAMP levels in dog ventricular muscle were not decreased by ET-1. These results indicate that activation of an ETA receptor that is coupled to the PTX-sensitive G protein plays a dominant role in the NCE and NIE of ET-1. The NCE of ET-1 may, in part, be due to a decrease in cAMP level. By contrast, the NIE of ET-1 does not involve an alteration of cAMP accumulation. The present findings imply that ET isopeptides might antagonize the cardiostimulatory action of catecholamines mediated by beta-adrenoceptors when the blood level of both endogenous regulators are increased under cardiovascular pathophysiological situations.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3