Role of nitric oxide in vasodilator response induced by salbutamol in rat diaphragmatic microcirculation

Author:

Chang H. Y.1

Affiliation:

1. Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.

Abstract

To determine the contribution of nitric oxide (NO) to the vasodilator response induced by salbutamol in diaphragmatic microcirculation, we studied a diaphragmatic preparation in anesthetized rats. With bicarbonate-buffered Ringer solution continuously suffusing the diaphragm, laser-Doppler flowmetry was used to record microvascular blood flow (QLDF). The drugs were applied to the surface of the diaphragm. Salbutamol (3.2 x 10(-7)-10(-4) M), isoproterenol (3.2 x 10(-8)-3.2 x 10(-6) M), and forskolin (3.2 x 10(-7)-10(-5) M) each elicited a concentration-dependent increase in QLDF. The vasodilator response induced by salbutamol (3.2 x 10(-7), 10(-6), and 3.2 x 10(-6) M) was attenuated by a 15-min suffusion of N omega-nitro-L-arginine (L-NNA, 10(-4) M), and pretreatment with L-arginine (10(-2) M) could restore salbutamol-induced vasodilator responses. Salbutamol-induced vasodilation was also abolished by propranolol (10(-5) M). Similarly, the vasodilator response elicited by isoproterenol (3.2 x 10(-8), 10(-7), and 3.2 x 10(-7) M) and forskolin (3.2 x 10(-7), 10(-6), and 3.2 x 10(-6) M) was inhibited by L-NNA (10(-4) M). In contrast, the vasodilator response induced by adenosine (10(-6), 10(-5), and 10(-4) M) was not affected by L-NNA (10(-4) M). These data indicate that in rat diaphragmatic microcirculation salbutamol-induced vasodilation may be partly mediated by beta-adrenoceptors on the endothelium. Moreover, these data suggest that an elevation of cyclic AMP in the endothelium may cause release of NO.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3