Affiliation:
1. Department of Clinical Neurosciences, University of Calgary, Alberta, Canada.
Abstract
Treatment of vascular tissue with low levels of lipopolysaccharide (LPS) induces nitric oxide synthase (NOS) activity and diminishes vascular contractility. However, in cultured vascular smooth muscle cells (VSMC), very high doses of LPS or the combination of LPS with cytokines are required for the induction of nitric oxide (NO) formation. The aims of this study were to establish a cell model to investigate LPS-induced hypocontractility and NO production and to test the hypothesis that responses of VSMC to LPS are differentiation regulated. We used Matrigel basement membrane matrix to maintain VSMC differentiation and found that VSMC cultured on Matrigel retained significant contractility in response to KCl stimulation. Incubation of VSMC with low levels of LPS(1–100 ng/ml) induced NOS mRNA and protein, induced NO production, and decreased cell contractility in a time- and dose-dependent fashion. The NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) partially restored LPS-treated VSMC contractility, whereas L-arginine reversed the contractility-restoring effect of L-NAME. These results suggest that VSMC grown on Matrigel are a useful experimental model for investigations into signal transduction mechanisms responsible for LPS-induced vascular hypocontractility.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献