Molecular remodeling of cardiac contractile function

Author:

James Jeanne1,Robbins Jeffrey1

Affiliation:

1. Children’s Hospital Research Foundation, Department of Pediatrics, Division of Molecular Cardiovascular Biology, Cincinnati, Ohio 45229-3039

Abstract

A number of techniques are now available that allow the contractile apparatus of the heart to be altered in a defined manner. This review focuses on those approaches that result in germ-line transmission of the remodeling event(s). Thus the desired modifications can be propagated stably throughout multiple generations and result in the creation of stable, new animal models. Necessarily, such stable changes need to be performed at the level of the genome, and two distinct but complementary approaches have been developed: transgenesis and gene targeting. Each results in the stable modification of the mammalian genome. Via gene targeting or gene ablation of sequences encoding various components of the sarcomere, the contractile apparatus of the heart can be altered dramatically. Ablating a gene may lead to a loss in function, which can help establish a function of the candidate sequence. Gene targeting can also be used to effect changes in the sequences encoding a functional domain of the contractile protein or at a single-amino acid residue, resulting in the establishment of precise structure-function relationships. With the use of transgenesis, the contractile apparatus of the heart can also be significantly remodeled. These approaches are rapidly creating a group of animals in which altered contractile protein complements will lead to a fundamental understanding of the structure-function relationships that underlie the function of the heart at the molecular, biochemical, whole organ, and whole animal levels.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differential protein expression and basal lamina remodeling in human heart failure;PROTEOMICS - Clinical Applications;2016-01-25

2. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited;Oxidative Medicine and Cellular Longevity;2016

3. Lost in Transgenesis;Circulation Research;2012-08-31

4. Signaling and Myosin-binding Protein C;Journal of Biological Chemistry;2011-03

5. Mouse models for cardiomyopathy research;Progress in Pediatric Cardiology;2007-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3