S-nitrosothiols inhibit neuronal norepinephrine transport

Author:

Kaye D. M.1,Wiviott S. D.1,Kobzik L.1,Kelly R. A.1,Smith T. W.1

Affiliation:

1. Cardiovascular Division, Brigham and Women's Hospital and HarvardMedical School, Boston, Massachusetts 02115, USA.

Abstract

Although it has been recently shown that nitric oxide (NO) and its congeners (NO(x)), including nitrosothiols, may modify catecholamine turnover in the brain, it is not known whether NO(x) affect norepinephrine (NE) uptake by sympathetic neurons. The nitrosothiol NO donor S-nitroso-acetylpenicillamine (SNAP, 100 microM for 1 h) elicited a concentration-dependent reduction in desipramine-sensitive [3H]NE uptake into PC-12 cells (66 +/- 3%; P < 0.01) or cultured rat superior cervical ganglia (74 +/- 5%; P < 0.001), whereas desipramine-insensitive [3H]NE uptake was unaffected, indicating a selective effect on uptake-1-mediated transport. Short-term coculture of PC-12 cells with microvascular endothelial cells expressing the cytokine-inducible NO synthase (NOS2) also exhibited a reduction in [3H]NE uptake (33 +/- 3%, P < 0.001) that could be prevented by the addition of the NOS inhibitor N-monomethyl-L-arginine (L-NMMA, 1 mM). Endogenous production of NO(x) by nerve growth factor-pretreated PC-12 cells also exhibited an L-NMMA-inhibitable reduction in [3H]NE uptake. Whereas SNAP resulted in a 10-fold elevation of PC-12 guanosine 3',5'-cyclic monophosphate (cGMP) content (P < 0.01), its effect on [3H]NE uptake was not mimicked by exposure to 8-bromo-cGMP. However, the inhibitory effect of SNAP on uptake-1-mediated [3H]NE transport could be attenuated by 1 mM cysteine, a sulfhydryl compound that could act as a sink for NO(x)-mediated nitrosation reactions, although cysteine did not affect the increase in intracellular cGMP with SNAP. These data suggest that an endogenous NO(x) source(s) modifies the activity of the uptake-1 catecholamine transporter in postganglionic sympathetic neurons, which, as we demonstrate, express both NOS1 and NOS3 isoforms, possibly by S-nitrosothiol-mediated nitrosation of regulatory sites on the transporter.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3