Endothelial vasodilator production by uterine and systemic arteries. II. Pregnancy effects on NO synthase expression

Author:

Magness R. R.1,Shaw C. E.1,Phernetton T. M.1,Zheng J.1,Bird I. M.1

Affiliation:

1. Department of Obstetrics and Gynecology/Perinatal ResearchLaboratories, University of Wisconsin-Madison, 53715, USA.rmagness@facstaff.wisc.edu

Abstract

Pregnancy is characterized by elevations in uterine but not omental artery nitric oxide synthase (NOS)-specific activity. We hypothesized that increases in NO production during pregnancy are associated with elevations in protein expression of the constitutive isoform, endothelial cell NOS (ecNOS), in uterine but not systemic arteries. Arterial NOS-specific activity and guanosine 3',5'-cyclic monophosphate (cGMP) production were tested in pregnant sheep in the presence or absence [+5 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] of Ca2+. With the use of Western analysis, ecNOS and neuronal NOS (nNOS) constitutive isoform expressions were evaluated in intact and denuded [vascular smooth muscle (VSM)] uterine and systemic (omental and renal) arteries as well as in isolated endothelium-derived proteins from nonpregnant and pregnant sheep. Uterine and omental artery NOS activity and cGMP production were inhibited 75-85% by Ca2+ removal. ecNOS was localized only in uterine and systemic artery endothelium (not VSM) by immunohistochemistry and Western analysis; nNOS was not detected. Compared with nonpregnant ewes, pregnancy increased expression of ecNOS in uterine [2.1- to 4.2-fold (P < 0.0001)] and omental [1.3- to 2.2-fold (P = 0.032)] but not renal (P = 0.1367) artery endothelium. Increases in uterine were greater than in omental artery endothelium. Levels of plasma and urinary cGMP were elevated (P < 0.01) proportionally (1.8- to 2.0-fold) in pregnant versus nonpregnant ewes. During pregnancy, expression of uterine artery endothelium-derived (not VSM) ecNOS constitutive isoform is increased, whereas expression in systemic vessels shows little or no change.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3