Contribution of angiotensin-converting enzyme to the cardiac metabolism of bradykinin: an interspecies study

Author:

Blais Charles1,Drapeau Guy2,Raymond Philippe1,Lamontagne Daniel1,Gervais Nicole1,Venneman Ingrid,Adam Albert1

Affiliation:

1. Faculté de Pharmacie, Université de Montréal, Montreal H3C 3J7;

2. Centre de Recherche (Université Laval), Hôtel-Dieu de Québec, Quebec, Quebec, Canada G1R 2J7; and Service d’Anesthésie-Réanimation, Centre Hospitalier Universitaire de Liège, B.35-B 4000, Liège, Belgium

Abstract

The role of angiotensin-converting enzyme (ACE) in the metabolism of bradykinin (BK) has been studied in several tissues. However, and contrary to angiotensin I, the metabolism of BK at the cardiac level has not been investigated. In this study, we define the participation of ACE in the carboxy-terminal degradation of BK in heart membranes of the dog, human, rabbit, and rat. The calculation of the kinetic parameters characterizing the metabolism of BK and the generated des-Arg9-BK can be summarized as follows: the half-life ( t 1/2) of BK [dog (218 ± 32 s) > human (143 ± 9 s) = rat (150 ± 4 s) > rabbit (22 ± 2 s)] and of des-Arg9-BK [dog (1,042 ± 40 s) > human (891 ± 87 s) > rat (621 ± 65 s) > rabbit (89 ± 8 s)] both showed significant differences according to species. Enalaprilat, an ACE inhibitor, significantly prevented the rapid degradation of BK and des-Arg9-BK in all species studied, whereas retrothiorphan, a neutral endopeptidase inhibitor, and losartan, an angiotensin II type I receptor antagonist, did not affect this metabolism. The relative importance of ACE in the cardiac metabolism of BK was species related: dog (68.4 ± 3.2%) = human (72.2 ± 2.0%) > rabbit (47.7 ± 5.0%) = rat (45.3 ± 3.9%). ACE participation in the metabolism of des-Arg9-BK was as follows: rabbit (57.0 ± 4.0%) > dog (39.9 ± 8.8%) = human (25.4 ± 5.5%) = rat (36.0 ± 7.0%). The participation of cardiac kininase I (carboxypeptidase M) in the transformation of BK into des-Arg9-BK was minor: human (2.6 ± 0.1%) > dog (0.9 ± 0.1%) = rabbit (1.0 ± 0.1%) = rat (1.0 ± 0.1%). These results demonstrate that ACE is the major BK-degrading enzyme in cardiac membranes. However, the metabolism of exogenous BK by heart membranes is species dependent. Our observations could explain some discrepancies regarding the contribution of kinins in the cardioprotective effects of ACE inhibitors.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3