Diameter variability and microvascular flow resistance

Author:

Pries A. R.1,Schonfeld D.1,Gaehtgens P.1,Kiani M. F.1,Cokelet G. R.1

Affiliation:

1. Department of Physiology, Freie Universitat Berlin, Germany.

Abstract

Microvessels are known to exhibit irregular shapes, deviating substantially from an idealized cylindrical tube geometry. Such irregularities must be taken into account in calculating microvascular flow resistance and may add to the observation that flow resistance in living microvessels in vivo is about twice that predicted on the basis of tube flow studies in vitro. The present study was aimed at providing a comprehensive database describing the apparent diameter variability for all segments of a complete microvascular network in the rat mesentery and assessing the impact of this variability on segmental flow resistance and the pressure drop across the network. Diameters were estimated by intravital microscopy at axial intervals of 20 microns along the 546 vessel segments of a mesenteric microvessel network, resulting in 6,319 separate diameter measurements. The amplitude of diameter variations in individual vessel segments decreased from approximately 15% of the mean vessel diameter in the smallest segments (approximately 5 microns diam) to approximately 5% in the largest segments (approximately 60 microns diam). Segmental hindrance was estimated to be 10-23% higher than calculated from arithmetic mean diameter, depending on the model used to estimate the hydrodynamically effective segment diameter. The overall pressure drop across the network calculated using a mathematical flow simulation was increased by 7-13.5%. This increase in flow resistance can explain approximately 10% of the observed discrepancy between flow resistance in vivo and in vitro.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3