Affiliation:
1. Oregon Regional Primate Research Center, Oregon Health SciencesUniversity, Beaverton 97006, USA.
Abstract
Cellular mechanisms of protection against drug-stimulated coronary vasospasm were studied by multiweek estrogen plus progesterone (P) vs. medroxy-progesterone acetate (MPA) treatments by measuring intracellular Ca2+ and protein kinase C (PKC) signals. Ovariectomized monkeys (OVX) were treated by slow-release implants with either P or MPA for 4 wk added to estradiol-17 beta (E2) begun 2 wk earlier. A third group received E2 for 2 wk and withdrawal of E2 (W; no steroid treatment) during the last 4 wk. OVX coronary artery vascular muscle cells (VMC) in primary culture conditions were labeled by the fluorescent indicators, fluo 3 and hypericin, respectively, to study intracellular Ca2+ and PKC mechanisms of coronary artery hyperre-activity, using digital analysis of single VMC by photon-counting camera. Stimulation by 10 microM serotonin and 100 nM U-46619 (thromboxane A2 mimetic) caused Ca2+ increases (2-5 min) and no PKC activation in VMC from five P-treated monkeys but prolonged (> or = 30 min) increases in both Ca2+ and PKC signals in VMC from six MPA-treated monkeys or seven W-treated monkeys; these P vs. MPA (or W) differences were maintained > or = 14 days. We hypothesize that hyperreactivity in VMC from MPA- or W-treated monkeys results from accelerated prolonged Ca2+ release, with concomitant PKC activation, and that MPA (but not P) negates the coronary vasospasm protective effect of E2.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献