LPS induces late cardiac functional protection against ischemia independent of cardiac and circulating TNF-α

Author:

Meng Xianzhong1,Ao Lihua1,Brown James M.1,Meldrum Daniel R.1,Sheridan Brett C.1,Cain Brian S.1,Banerjee Anirban1,Harken Alden H.1

Affiliation:

1. Department of Surgery, University of Colorado Health Sciences Center, Denver, Colorado 80262

Abstract

Lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α independently induce cardioprotection against ischemia in the rat at 24 h after administration, suggesting that endogenously synthesized TNF-α may play a role in LPS-induced protection. The purposes of this study were 1) to delineate the time course of LPS-induced cardiac functional protection against ischemia and its relation with myocardial and circulating TNF-α profile, 2) to examine whether prior protein synthesis inhibition abrogates the protection, and 3) to assess the effects of TNF-α inhibition and neutralization on the protection. Rats were treated with LPS (0.5 mg/kg ip). Cardiac functional resistance to normothermic global ischemia-reperfusion was examined at sequential time points after LPS treatment in isolated hearts by the Langendorff technique. Myocardial and circulating TNF-α was determined by enzyme-linked immunosorbent assay at 1–24 h after LPS treatment. Protection was apparent at 24 h, 3 days, and 7 days but not at 2 or 12 h. Maximal protection at 3 days was abolished by cycloheximide pretreatment (0.5 mg/kg ip 3 h before LPS treatment). Increases in myocardial and circulating TNF-α preceded the acquisition of protection. Dexamethasone pretreatment (4.0 or 8.0 mg/kg ip 30 min before LPS treatment) abolished peak increase in myocardial TNF-α and substantially suppressed circulating TNF-α (54.3 and 85.9% inhibition, respectively) without an influence on the maximal protection. Similarly, maximal protection was not affected by TNF binding protein (40 or 80 μg/kg iv immediately after LPS treatment). The results suggest that LPS-induced cardiac functional protection against ischemia is a delayed and long-lasting protective response that may involve de novo protein synthesis. Although LPS-induced increase in myocardial and circulating TNF-α precedes the delayed protection, it may not be required for the delayed protection.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3