Affiliation:
1. Department of Bioengineering, University of California, San Diego School of Medicine, La Jolla 92093, USA.
Abstract
During healing after myocardial infarction, scar collagen content and stiffness do not correlate. We studied regional mechanics and both area fraction and orientation of large collagen fibers 3 wk after coronary ligation in the pig. During passive inflation of isolated, arrested hearts, the scar tissue demonstrated significantly less circumferential strain but similar longitudinal and radial deformation in comparison with noninfarcted regions of the same hearts. The observed selective resistance to circumferential deformation was consistent with the finding that most of the large collagen fibers in the scar were oriented within 30 degrees of the local circumferential axis. Furthermore, data from a previous study indicate that during ventricular systole these scars resist circumferential stretching, whereas they deform similarly to noninfarcted myocardium in the longitudinal and radial directions. We conclude that large collagen fiber structure is an important determinant of scar mechanical properties and that scar anisotropy allows the scar to resist circumferential stretching while deforming compatibly with adjacent noninfarcted myocardium in the longitudinal and radial directions.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献