NO contributes to neurohypophysial but not other regional cerebral fluorocarbon-induced hyperemia in cats

Author:

Wagner B. P.1,Stingele R.12,Williams M. A.12,Wilson D. A.1,Traystman R. J.1,Hanley D. F.12

Affiliation:

1. Departments of Neurology and

2. Anesthesiology/Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21287

Abstract

The large increase in cerebral blood flow (CBF) after fluorocarbon (FC)-exchange transfusion is thought to be caused by low oxygen content, decreased viscosity, or direct vasodilatory effect of the FC perfusate. The aim of this study was to determine whether nitric oxide (NO)-mediated vasorelaxation is increased in FC-perfused hemoglobin (Hb)-free cats because NO is not scavenged by Hb. We measured regional CBF with radiolabeled microspheres in three groups of anesthetized mechanically ventilated cats. The first group [FC + Nω-nitro-l-arginine methyl ester (l-NAME); n = 7] underwent a complete FC-exchange transfusion with FC-43 and subsequent nitric oxide synthase (NOS) inhibition with l-NAME (10 mg/kg iv) followed by l-arginine (100 mg/kg iv). A second group (FC + saline; n = 6) underwent an identical protocol, but NOS was not antagonized (saline iv). In a third group (blood + l-NAME; n = 7), cats were not FC exchanged but NOS was inhibited. In a separate cohort of four FC-perfused cats, NOS activity in brain tissue samples was reduced to 26% of control after NOS inhibition. FC-exchange transfusion nearly doubled hemispheric blood flow in both FC-exchanged groups, whereas it was constant in the blood + l-NAME group. These increases in regional CBF (hemispheres, brain stem, cerebellum, thalamus, and white matter) were not reversed by inhibition of NOS, except in the neurohypophysis, wherel-NAME reduced blood flow to levels comparable to values in the blood +l-NAME group. In summary, increases in regional CBF after total FC-exchange transfusion are not caused by a lack of NO scavenging, with the exception of neurohypophysis. These findings suggest an increased vasorelaxation in neurohypophysis of FC-perfused and Hb-free cats caused by unscavenged NO, but this mechanism does not play a major role in FC-related CBF increases in the rest of the cerebral circulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3