Affiliation:
1. Department of Pharmacology, Columbia University, New York, New York10032, USA.
Abstract
The effect of the cardiac swelling-induced chloride current (I(Cl,swell)) on the transmembrane potential was examined. Osmotic swelling affected the resting potassium current through an apparent dilution of intracellular potassium. Inflating cells by applying positive pressure to the patch electrode prevented the effect on the resting potassium current. Inflation depolarized dog atrial myocytes when the recording electrodes contained either 17 or 42 mM Cl-. The depolarization coincided with activation of I(Cl,swell) and was antagonized by the chloride-channel blocker niflumic acid. Substituting extracellular chloride with the more permeant ion SCN- shifted the reversal potential for I(Cl,swell) to more negative values and antagonized inflation-induced depolarization. The depolarization was accentuated by replacing extracellular chloride with a less permeant ion, aspartate. We conclude that activation of I(Cl,swell) in atrial cells causes significant depolarization of the resting membrane. The outward rectification of I(Cl,swell) and the high cell membrane resistance during the action potential plateau suggest that I(Cl,swell) will also have significant effects on atrial action potential configuration.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献