Status epilepticus induces cardiac myofilament damage and increased susceptibility to arrhythmias in rats

Author:

Metcalf Cameron S.1,Poelzing Steven2,Little Jason G.1,Bealer Steven L.1

Affiliation:

1. Department of Pharmacology and Toxicology, College of Pharmacy, and

2. Department of Bioengineering and the Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah

Abstract

Status epilepticus (SE) is a seizure or series of seizures that persist for >30 min and often results in mortality. Death rarely occurs during or immediately following seizure activity, but usually within 30 days. Although ventricular arrhythmias have been implicated in SE-related mortality, the effects of this prolonged seizure activity on the cardiac function and susceptibility to arrhythmias have not been directly investigated. We evaluated myocardial damage, alterations in cardiac electrical activity, and susceptibility to experimentally induced arrhythmias produced by SE in rats. SE resulted in seizure-related increases in blood pressure, heart rate, and the first derivative of pressure, as well as modest, diffuse myocyte damage assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining. Ten to twelve days following seizures, electrocardiographic recordings showed arrhythmogenic alterations in cardiac electrical activity, denoted by prolonged QT interval corrected for heart rate and QT dispersion. Finally, SE increased susceptibility to experimentally induced (intravenous aconitine) cardiac arrhythmias. These data suggest that SE produces tachycardic ischemia following the activation of the sympathetic nervous system, resulting in cardiac myofilament damage, arrhythmogenic alterations in cardiac electrical activity, and increased susceptibility to ventricular arrhythmias.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3